Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Lab Chip ; 24(7): 2049-2057, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38426311

RESUMO

Bacteria secrete extracellular vesicles (EVs), also referred to as bacterial membrane vesicles, which carry, among other compounds, lipids, nucleic acids and virulence factors. Recent studies highlight the role of EVs in the emergence of antibiotic resistance, e.g. as carrier and absorbent particles of the drug to protect the cells, or as a pathway to disseminate resistance elements. In this study, we are interested in characterizing the secretion of EVs at the single bacterial level to ultimately understand how cells respond to antibiotic treatment. We introduce a microfluidic device that enables culture of single bacterial cells and capture of EVs secreted from these individuals. The device incorporates parallel, narrow winding channels to trap single rod-shaped E. coli cells at their entrances. The daughter cells are immediately removed by continuous flow on the open side of the trap, so that the trap contains always only a single cell. Cells grew in these traps over 24 h with a doubling time of 25 minutes. Under antibiotic treatment, the doubling time did not change, but we observed small changes in the cell length of the trapped cells (decrease from 4.0 µm to 3.6 µm for 0 and 250 ng mL-1 polymyxin B, respectively), and cells stopped growing within hours, depending on the drug concentration. Compared to bulk culture, the results indicate a higher susceptibility of on-chip-cultured cells (250 ng mL-1vs. >500 ng mL-1 in bulk), which may be caused, among other reasons, by the space limitation in the cell trap and shear forces. During the culture, EVs secreted by the trapped cells entered the winding channel. We developed a procedure to selectively coat these channels with poly-L-lysine resulting in a positively charged surface, which enabled electrostatic capture of negatively charged EVs. Subsequently, the immobilized EVs were stained with a lipophilic dye and detected by fluorescence microscopy. Our findings confirm large variations of EV secretion among individual bacteria and indicate a relative high rate of EV secretion under antibiotic treatment. The proposed method can be extended to the detection of other secreted substances of interest and may facilitate the elucidation of unknown heterogeneities in bacteria.


Assuntos
Escherichia coli , Vesículas Extracelulares , Humanos , Células Cultivadas , Análise de Sequência com Séries de Oligonucleotídeos , Vesículas Extracelulares/metabolismo , Antibacterianos/farmacologia
2.
Lab Chip ; 24(5): 1064-1075, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356285

RESUMO

Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Ensaios de Triagem em Larga Escala/métodos , Engenharia Biomédica
4.
Lab Chip ; 24(2): 292-304, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38086670

RESUMO

Leukocyte recruitment from blood to tissue is a process that occurs at the level of capillary vessels during both physiological and pathological conditions. This process is also relevant for evaluating novel adoptive cell therapies, in which the trafficking of therapeutic cells such as chimeric antigen receptor (CAR)-T cells throughout the capillaries of solid tumors is important. Local variations in blood flow, mural cell concentration, and tissue stiffness contribute to the regulation of capillary vascular permeability and leukocyte trafficking throughout the capillary microvasculature. We developed a platform to mimic a biologically functional human arteriole-venule microcirculation system consisting of pericytes (PCs) and arterial and venous primary endothelial cells (ECs) embedded within a hydrogel, which self-assembles into a perfusable, heterogeneous microvasculature. Our device shows a preferential association of PCs with arterial ECs that drives the flow-dependent formation of microvasculature networks. We show that PCs stimulate basement membrane matrix synthesis, which affects both vessel diameter and permeability in a manner correlating with the ratio of ECs to PCs. Moreover, we demonstrate that hydrogel concentration can affect capillary morphology but has no observed effect on vascular permeability. The biological function of our capillary network was demonstrated using an inflammation model, where significantly higher expression of cytokines, chemokines, and adhesion molecules was observed after tumor necrosis factor-alpha (TNF-α) treatment. Accordingly, T cell adherence and transendothelial migration were significantly increased in the immune-activated state. Taken together, our platform allows the generation of a perfusable microvasculature that recapitulates the structure and function of an in vivo capillary bed that can be used as a model for developing potential immunotherapies.


Assuntos
Células Endoteliais , Microvasos , Humanos , Microvasos/metabolismo , Capilares/fisiologia , Leucócitos , Hidrogéis/metabolismo
5.
Am J Physiol Cell Physiol ; 324(4): C821-C836, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802732

RESUMO

Pericytes are mural cells that play an important role in regulation of angiogenesis and endothelial function. Cadherins are a superfamily of adhesion molecules mediating Ca2+-dependent homophilic cell-cell interactions that control morphogenesis and tissue remodeling. To date, classical N-cadherin is the only cadherin described on pericytes. Here, we demonstrate that pericytes also express T-cadherin (H-cadherin, CDH13), an atypical glycosyl-phosphatidylinositol (GPI)-anchored member of the superfamily that has previously been implicated in regulation of neurite guidance, endothelial angiogenic behavior, and smooth muscle cell differentiation and progression of cardiovascular disease. The aim of the study was to investigate T-cadherin function in pericytes. Expression of T-cadherin in pericytes from different tissues was performed by immunofluorescence analysis. Using lentivirus-mediated gain-of-function and loss-of-function in cultured human pericytes, we demonstrate that T-cadherin regulates pericyte proliferation, migration, invasion, and interactions with endothelial cells during angiogenesis in vitro and in vivo. T-cadherin effects are associated with the reorganization of the cytoskeleton, modulation of cyclin D1, α-smooth muscle actin (αSMA), integrin ß3, metalloprotease MMP1, and collagen expression levels, and involve Akt/GSK3ß and ROCK intracellular signaling pathways. We also report the development of a novel multiwell 3-D microchannel slide for easy analysis of sprouting angiogenesis from a bioengineered microvessel in vitro. In conclusion, our data identify T-cadherin as a novel regulator of pericyte function and support that it is required for pericyte proliferation and invasion during active phase of angiogenesis, while T-cadherin loss shifts pericytes toward the myofibroblast state rendering them unable to control endothelial angiogenic behavior.


Assuntos
Células Endoteliais , Pericitos , Humanos , Pericitos/metabolismo , Células Endoteliais/metabolismo , Caderinas/genética , Caderinas/metabolismo , Morfogênese , Neovascularização Fisiológica
6.
Lab Chip ; 23(2): 362-371, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36606762

RESUMO

High numbers of tumour-associated macrophages (TAMs) in the tumour microenvironment are associated with a poor prognosis. However, the effect of TAMs on tumour progression depends on the proteins secreted by individual TAMs. Here, we developed a microfluidic platform to quantitatively measure the secreted proteins of individual macrophages as well as macrophages polarized by the culture medium derived from breast cancer cells. The macrophages were captured in hydrodynamic traps and isolated with pneumatically activated valves for single-cell analysis. Barcoded and functionalized magnetic beads were captured in specially designed traps to determine the secreted proteins by immunoassay. Individual bead trapping facilitated the recording of the protein concentration since all beads were geometrically constrained in the same focal plane, which is an important requirement for rapid and automated image analysis. By determining three signaling proteins, namely interleuking 10 (IL-10), vascular endothelial growth factor (VEGF), and tumour necrosis factor alpha (TNF-α), we successfully distinguished between differently polarized macrophages. The results indicate a heterogeneous pattern, with M2 macrophages characterized by a higher secretion of IL-10, while M1 macrophages secrete high levels of the inflammatory cytokine TNF-α. The macrophages treated with the supernatant from cancer cells show a similar signalling pattern to M2 macrophages with an increased secretion of the pro-tumoural cytokine VEGF. This microfluidic method resolves correlations in signaling protein expression at the single-cell level. Ultimately, single-macrophage analysis can contribute to the development of novel therapies aimed at reversing M2-like TAMs into M1-like TAMs.


Assuntos
Interleucina-10 , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608325

RESUMO

Extracellular vesicles (EVs) are considered as valuable biomarkers to discriminate healthy from diseased cells such as cancer. Passing cytosolic and plasma membranes before their release, EVs inherit the biochemical properties of the cell. Here, we determine protein profiles of single EVs to understand how much they represent their cell of origin. We use a microfluidic platform which allows to immobilize EVs from completely isolated single cells, reducing heterogeneity of EVs as strongly seen in cell populations. After immunostaining, we employ four-color total internal reflection fluorescence microscopy to enumerate EVs and determine their biochemical fingerprint encoded in membranous or cytosolic proteins. Analyzing single cells derived from pleural effusions of two different human adenocarcinoma as well as from human embryonic kidney (SkBr3, MCF-7 and HEK293, respectively), we observed that a single cell secretes enough EVs to extract the respective tissue fingerprint. We show that overexpressed integral plasma membrane proteins are also found in EV membranes, which together with populations of colocalized proteins, provide a cell-specific, characteristic pattern. Our method highlights the potential of EVs as a diagnostic marker and can be directly employed for fundamental studies of EV biogenesis.

8.
Lab Chip ; 23(3): 534-541, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36642981

RESUMO

Immunoassays are frequently used for analysis of protein biomarkers. The specificity of antibodies enables parallel analysis of several target proteins, at the same time. However, the implementation of such multiplexed assays into cost-efficient and mass-producible thermoplastic microfluidic platforms remains difficult due to the lack of suitable immobilization strategies for different capture antibodies. Here, we introduce and characterize a method to functionalize the surfaces of microfluidic devices manufactured in the thermoplastic material cyclic olefin copolymer (COC) by a rapid prototyping process. A laser-induced immobilization process enables the surface patterning of anchor biomolecules at a spatial resolution of 5 µm. We employ the method for the analysis of prostate cancer associated biomarkers by competitive immunoassays in a microchannel with a total volume of 320 nL, and successfully detected the proteins PSA, CRP, CEA and IGF-1 at clinically relevant concentrations. Finally, we also demonstrate the simultaneous analysis of three markers spiked into undiluted human plasma. In conclusion, this method opens the way to transfer multiplexed immunoassays into mass-producible microfluidic platforms that are suitable for point of care applications.


Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata , Masculino , Humanos , Próstata , Proteínas , Polímeros , Anticorpos , Neoplasias da Próstata/diagnóstico
9.
Microsyst Nanoeng ; 8: 130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561926

RESUMO

Cancer patients with advanced disease are characterized by intrinsic challenges in predicting drug response patterns, often leading to ineffective treatment. Current clinical practice for treatment decision-making is commonly based on primary or secondary tumour biopsies, yet when disease progression accelerates, tissue biopsies are not performed on a regular basis. It is in this context that liquid biopsies may offer a unique window to uncover key vulnerabilities, providing valuable information about previously underappreciated treatment opportunities. Here, we present MyCTC chip, a novel microfluidic device enabling the isolation, culture and drug susceptibility testing of cancer cells derived from liquid biopsies. Cancer cell capture is achieved through a label-free, antigen-agnostic enrichment method, and it is followed by cultivation in dedicated conditions, allowing on-chip expansion of captured cells. Upon growth, cancer cells are then transferred to drug screen chambers located within the same device, where multiple compounds can be tested simultaneously. We demonstrate MyCTC chip performance by means of spike-in experiments with patient-derived breast circulating tumour cells, enabling >95% capture rates, as well as prospective processing of blood from breast cancer patients and ascites fluid from patients with ovarian, tubal and endometrial cancer, where sensitivity to specific chemotherapeutic agents was identified. Together, we provide evidence that MyCTC chip may be used to identify personalized drug response patterns in patients with advanced metastatic disease and with limited treatment opportunities.

10.
Angew Chem Int Ed Engl ; 61(48): e202207328, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36130864

RESUMO

The potential for ultrahigh-throughput compartmentalization renders droplet microfluidics an attractive tool for the directed evolution of enzymes. Importantly, it ensures maintenance of the phenotype-genotype linkage, enabling reliable identification of improved mutants. Herein, we report an approach for ultrahigh-throughput screening of an artificial metalloenzyme in double emulsion droplets (DEs) using commercially available fluorescence-activated cell sorters (FACS). This protocol was validated by screening a 400 double-mutant streptavidin library for ruthenium-catalyzed deallylation of an alloc-protected aminocoumarin. The most active variants, identified by next-generation sequencing, were in good agreement with hits obtained using a 96-well plate procedure. These findings pave the way for the systematic implementation of FACS for the directed evolution of (artificial) enzymes and will significantly expand the accessibility of ultrahigh-throughput DE screening protocols.


Assuntos
Metaloproteínas , Emulsões , Metaloproteínas/genética , Microfluídica , Citometria de Fluxo , Estreptavidina , Ensaios de Triagem em Larga Escala
11.
Biomicrofluidics ; 16(4): 044105, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935120

RESUMO

Microfluidic tools are well suited for studying bacteria as they enable the analysis of small colonies or single cells. However, current techniques for studying bacterial response to antibiotics are largely limited to static dosing. Here, we describe a microfluidic device and a method for entrapping and cultivating bacteria in hydrogel plugs. Ring-shaped isolation valves are used to define the shape of the plugs and also to control exposure of the plugs to the surrounding medium. We demonstrate bacterial cultivation, determination of the minimum inhibitory concentration of an antibiotic, and transient dosing of an antibiotic at sub-1-h doses. The transient dosing experiments reveal that at dose durations on the order of minutes, ampicillin's bactericidal effect has both a time and concentration dependency.

12.
Angew Chem Int Ed Engl ; 61(13): e202114632, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34989471

RESUMO

The global surge in bacterial resistance against traditional antibiotics triggered intensive research for novel compounds, with antimicrobial peptides (AMPs) identified as a promising candidate. Automated methods to systematically generate and screen AMPs according to their membrane preference, however, are still lacking. We introduce a novel microfluidic system for the simultaneous cell-free production and screening of AMPs for their membrane specificity. On our device, AMPs are cell-free produced within water-in-oil-in-water double emulsion droplets, generated at high frequency. Within each droplet, the peptides can interact with different classes of co-encapsulated liposomes, generating a membrane-specific fluorescent signal. The double emulsions can be incubated and observed in a hydrodynamic trapping array or analyzed via flow cytometry. Our approach provides a valuable tool for the discovery and development of membrane-active antimicrobials.


Assuntos
Peptídeos Antimicrobianos , Microfluídica , Emulsões/química , Citometria de Fluxo/métodos , Microfluídica/métodos , Água/química
13.
Small Methods ; 5(8): e2100331, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34927870

RESUMO

Microfluidic methods for the formation of single and double emulsion (DE) droplets allow for the encapsulation and isolation of reactants inside nanoliter compartments. Such methods have greatly enhanced the toolbox for high-throughput screening for cell or enzyme engineering and drug discovery. However, remaining challenges in the supply of reagents into these enclosed compartments limit the applicability of droplet microfluidics. Here, a strategy is introduced for on-demand delivery of reactants in DEs. Lipid vesicles are used as reactant carriers, which are co-encapsulated in double emulsions and release their cargo upon addition of an external trigger, here the anionic surfactant sodium dodecyl sulfate (SDS). The reagent present inside the lipid vesicles stays isolated from the remaining content of the DE vessel until SDS enters the DE lumen and solubilizes the vesicles' lipid bilayer. The versatility of the method is demonstrated with two critical applications chosen as representative assays for high-throughput screening: the induction of gene expression in bacteria and the initiation of an enzymatic reaction. This method not only allows for the release of the lipid vesicle content inside DEs to be synchronized for all DEs but also for the release to be triggered at any desired time.


Assuntos
Bicamadas Lipídicas , Microfluídica , Emulsões/química , Expressão Gênica , Indicadores e Reagentes , Microfluídica/métodos
14.
Lab Chip ; 21(21): 4071-4080, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34618882

RESUMO

Microbial cells represent a standard production host for various important biotechnological products. Production yields can be increased by optimising strains and growth conditions and understanding deviations in production rates over time or within the microbial population. We introduce here microfluidic cultivation chambers for highly parallel studies on microbial cultures, enabling continuous biosynthesis monitoring of the industrially relevant product by Escherichia coli cells. The growth chambers are defined by ring-valves that encapsulate a volume of 200 pL when activated. Bacterial cells, labelled with magnetic beads, are inoculated in a small magnetic trap, positioned in the centre of each chamber. Afterwards, the ring-valves are partially activated, allowing for exchange reagents, such as the addition of fresh media or specific inducers of biosynthesis, while the bacterial cells and their progeny are maintained inside. On this platform, we monitor the production of riboflavin (vitamin B2). We used different variants of a riboflavin-overproducing bacterial strain with different riboflavin production levels and could distinguish them on the level of individual micro-colonies. In addition, we could also observe differences in the bacterial morphology with respect to the production. The presented platform represents a flexible microfluidic tool for further studies of microbial cell factories.


Assuntos
Escherichia coli , Microfluídica , Riboflavina/biossíntese , Vitaminas/biossíntese , Meios de Cultura , Escherichia coli/genética , Microbiologia Industrial
15.
Anal Chem ; 93(38): 13008-13013, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34533299

RESUMO

We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features. An optimized UV-vis detection region extended the absorbance path length for droplets and allowed for the direct protein quantification down to 10 µM of bovine serum albumin at 280 nm. UV-vis spectral data can distinguish a variety of different chemicals or spurious events (such as air bubbles) that are inaccessible at a single wavelength. The platform is used to measure ergothionase enzyme activity from monoclonal microcolonies isolated in droplets. In a label-free manner, we directly measure the ergothioneine substrate to thiourocanic acid product conversion while tracking the microcolony formation. UVADS represents an important new tool for high-throughput label-free in-droplet chemical analysis.


Assuntos
Software
16.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518226

RESUMO

Extracellular vesicles (EVs) are constantly secreted from both eukaryotic and prokaryotic cells. EVs, including those referred to as exosomes, may have an impact on cell signaling and an incidence in diseased cells. In this manuscript, a platform to capture, quantify, and phenotypically classify the EVs secreted from single cells is introduced. Microfluidic chambers of about 300 pL are employed to trap and isolate individual cells. The EVs secreted within these chambers are then captured by surface-immobilized monoclonal antibodies (mAbs), irrespective of their intracellular origin. Immunostaining against both plasma membrane and cytosolic proteins was combined with highly sensitive, multicolor total internal reflection fluorescence microscopy to characterize the immobilized vesicles. The data analysis of high-resolution images allowed the assignment of each detected EV to one of 15 unique populations and demonstrated the presence of highly heterogeneous phenotypes even at the single-cell level. The analysis also revealed that each mAb isolates phenotypically different EVs and that more vesicles were effectively immobilized when CD63 was targeted instead of CD81. Finally, we demonstrate how a heterogeneous suppression in the secreted vesicles is obtained when the enzyme neutral sphingomyelinase is inhibited.


Assuntos
Vesículas Extracelulares/metabolismo , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Exossomos/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Fenótipo
17.
ACS Sens ; 6(6): 2202-2210, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33900065

RESUMO

Rapid identification of a pathogen and the measurement of its antibiotic susceptibility are key elements in the diagnostic process of bacterial infections. Microfluidic technologies offer great control over handling and manipulation of low sample volumes with the possibility to study microbial cultures on the single-cell level. Downscaling the dimensions of cultivation systems directly results in a lower number of bacteria required for antibiotic susceptibility testing (AST) and thus in a reduction of the time to result. The developed platform presented in this work allows the reading of pathogen resistance profiles within 2-3 h based on the changes of dissolved oxygen levels during bacterial cultivation. The platform contains hundreds of individual growth chambers prefilled with a hydrogel containing oxygen-sensing nanoprobes and different concentrations of antibiotic compounds. The performance of the developed platform is tested using quality control Escherichia coli strains (ATCC 25922 and ATCC 35218) in response to clinically relevant antibiotics. The results are in agreement with values given in reference guidelines and independent measurements using a clinical AST protocol. Finally, the platform is successfully used for the AST of an E. coli clinical isolate obtained from a patient blood culture.


Assuntos
Escherichia coli , Microfluídica , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Respiração
18.
Anal Chem ; 93(12): 5137-5144, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33721989

RESUMO

We investigated the permeation of molecules across lipid membranes on an open microfluidic platform. An array of droplet pairs was created by spotting aqueous droplets, dispersed in a lipid oil solution, onto a plate with cavities surrounded by a hydrophobic substrate. Droplets in two adjacent cavities come in contact and form an artificial lipid bilayer, called a droplet interface bilayer (DIB). The method allows for monitoring permeation of fluorescently tagged compounds from a donor droplet to an acceptor droplet. A mathematical model was applied to describe the kinetics and determine the permeation coefficient. We also demonstrate that permeation kinetics can be followed over a series of droplets, all connected via DIBs. Moreover, by changing the lipid oil composition after spotting donor droplets, we were able to create asymmetric membranes that we used to mimic the asymmetry of the cellular plasma membrane. Finally, we developed a protocol to separate and extract the droplets for label-free analysis of permeating compounds by liquid chromatography-mass spectrometry. Our versatile platform has the potential to become a new tool for the screening of drug membrane permeability in the future.


Assuntos
Bicamadas Lipídicas , Água , Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Membranas
19.
Angew Chem Int Ed Engl ; 60(46): 24368-24387, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33539653

RESUMO

Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.


Assuntos
Evolução Molecular Direcionada , Enzimas/metabolismo , Microfluídica/métodos , Antibacterianos/biossíntese , Antibacterianos/química , Emulsões/química , Enzimas/genética , Escherichia coli/química , Escherichia coli/metabolismo , Microfluídica/instrumentação , Mutagênese , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Taq Polimerase/genética , Taq Polimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...